

Introduction

- The second main important consideration in the formulation of a research problem in quantitative research is the construction of a hypothesis.
- Hypothesis brings clarity, focus and specificity to a research problem, but are *not essential* for a study.
- You can conduct a valid investigation without constructing a single hypothesis.
- Hypothesis arise from a set of *hunches* that are tested through the study.
- In these examples, you started with superficial hunch or an assumption. Only after a careful investigation, you arrive at a conclusion about the validity of the your assumptions.

Introduction cont'd

- In most cases, the hypothesis will be based upon either previous studies or your own or someone else's observations.
- In social science, where direct knowledge of *population parameter(s) is rare*, hypothesis testing is often used strategy for deciding whether a *sample data* offer such support for a hypothesis that generalization can be made. Thus hypothesis testing enables us to make *probability statements* about *population parameter(s)..*

Introduction cont'd

- Therefore, often a research hypothesis is a predictive statement, capable of being tested by scientific methods, that relates an independent variable to some independent variable.
- E.g.: "Students who receive counseling will show a greater increase in creativity than students not receiving counseling".
- E.g.: "the automobile A is performing as well as automobile B"

Characteristics of hypothesis

- Hypothesis should be clear and precise.
 - E.g.: the average age of the male students in this class is higher than that of the female students.
- Hypothesis should be capable of being tested.
 - E.g.: Modern man evolved from apes.The universe started off with a big bang
- Hypothesis should state relationships between variables.
- Hypothesis should be operationalize.

Basic concepts of testing hypothesis <u>Null hypothesis and alternative hypothesis</u> Null Hypothesis is a statement about a <u>population</u> <u>parameter</u>, such as the population mean, that is assumed to be true. E.g.: children in Sri Lanka watch an average of 3 hours of TV per week. This is a starting point so that we can decide whether this is likely to be true. E.g.: A manufacturer is filling 100 packages with flour. Thus the null hypothesis, H₀: μ = μ_{H0} = 100 Population mean

Basic concepts of testing hypothesis cont'd

- If our sample does not support this null hypothesis, we should conclude that something else is true.
- What we conclude rejecting the null hypothesis is known as alternate hypothesis.
- Alternate hypothesis is a statement that directly contradicts a null hypothesis by stating that that the actual value of a population parameter is less than, greater than, or not equal to the value stated in the null hypothesis.
- If we accept H_0 then we are rejecting H_1 and if we reject H_0 then we are accepting H_1

Basic concepts of testing hypothesis cont'd

- 2. The level of Significance
- In this stage we set the criteria for the decision.
- To set the criteria for a decision, we state the level of significance for a test.
- This is similar to the criterion that jurors use in a criminal trial. Jurors decide whether the evidence presented shows guilt beyond a reasonable doubt (this is the criterion).
- level of significance is typically set at 5% in behavioral research studies.
- The 5 per cent level of significance means that researcher is willing to take as much as a 5 per cent risk of rejecting the null hypothesis when it (H_a) happens to be true.

Basic concepts of testing hypothesis cont'd

- 4. One tail and Two tail tests
- A two-tailed test rejects the null hypothesis if, say, the sample mean is significantly higher or lower than the hypothesized value of the mean of the population.

 $H_0: \mu = \mu_{H_0}$ and $H_a: \mu \neq \mu_{H_0}$

• <u>example:</u> A sample of 40 sales receipts from a grocery store has x = Rs137 and standard deviation = Rs30.2. Use these values to test whether or not the mean is sales at the grocery store are different from Rs150. Set $\alpha = .01$

10

• A **one-tailed test** would be used when we are to test, say, whether the population mean is either lower than or higher than some hypothesized value. $\mathbf{H}_0: \mu = \mu_{H_0}$ and $H_a: \mu < \mu_{H_0}$

Example: An insurance company is reviewing its current policy rates. When originally setting the rates they believed that the average claim amount was \$1,800. They are concerned that the true mean is actually higher than this, because they could potentially lose a lot of money. They randomly select 40 claims, and calculate a sample mean of \$1,950. Assuming that the standard deviation of claims is \$500, and set *a*=:05, test to see if the insurance company should be concerned.

13

Hypothe	esis testin	g with \$	SPSS cont'd	1	
Multip	le regression	on analy	sis output		
Model	Unstanda Coefficie	irdized ints	Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
1 (Constan	t) 1.726	3.943		.438	.663
Perceiveo Desirabil	l .485 ity	.213	.229	2.282	.025
Perceiveo Feasibilit	1 y .314	.062	.510	5.090	.000
a Dependent Var					
					17

Model		Unstandard	lized Coefficients	Standardized Coefficients		
		В	Std. Error	Beta	t	Sig
1	(Constant)	1.877	3.925		.478	.634
	Credibility	.347	.037	.683	9.268	.000
Deper	ndent Variabl	e: Entrepren	eurial Intention			
P	redictor v	variable ((credibility) b	ecome significant.	Since	Э,
P	<0.05.					
• T	hus, the I	research	er concludes	s, credibility is als	oa	
	1	A in date		transanousial into	ntion	

Г

Summary of data analysis is given below through hypothesis testing.					
No	Hypothesis	Result	Tools		
H ₁	There is a significant impact of Credibility on Entrepreneurial Intention	Accepted	Regression		
H _{2a}	There is a significant impact of Perceived Desirability on Entrepreneurial Intention	Accepted	Regression		
H _{2b}	There is a significant impact of Perceived Feasibility on Entrepreneurial Intention	Accepted	Regression		

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5749.005	2	2874.503	42.924	.000(a)
	Residual	6495.835	97	66.967		
	Total	12244.840	99			
a Predi b Depe	ictors: (Consta endent Variabl	nt), Perceived Fea e: Entrepreneurial	sibi Inte	lity, Perceived I ention	Desirabil	ity
= T (;	he resear significanc	cher assess ce) P<.05	the	overall mo	odel fit,	21

References..

- Kumar, R 2011, Research Methodology: A Step by Step Guide for Beginners, 3rd edn, Sage Publications.
- Sekaran, U & Bougie, R 2009, Research Methods for Business: A Skill Building Approach, 5th edn, John Wiley & Sons.

22